My books on manufacturing

My books on manufacturing
My books on manufacturing history

Saturday, April 13, 2024

Who else shaped the Manufacturing World - German steel

 In Britain, the relatively large scale production of steel probably began in the mid eighteenth century with the discovery by Huntsman of a process for making crucible steel. This was some seventy years head of Germany and thrived on high quality Swedish ore.

German steel making would become synonymous with the name Krupp and in his book, The Arms of Krupp 1587-1968, William Manchester begins with the story of a family in the little known town of Essen, who, surviving the plague, became merchants and property owners. All this was before the advent of Germany as a nation; indeed, political control vested in the Abbess of Essen. The Krupp family carried on a very small scale business of making small objects from local iron ore, but this amounted to very little. In spite of this, the wealth of the family increased and in the late eighteenth century Alfred Krupp began experimenting with iron smelting to find the illusive and far more useful steel. Prussia, of which Essen, was a part imported English steel, as did most of Europe until the arrival of Napoleon and the effective closing of trade routes with England.

Alfred’s experiments came to little except for the expending of the family’s wealth. In 1826 he died and his fourteen year old son, also Alfred, took over the running of the small family iron foundry. He had all the ambition of his father, but with the vital additions of ability and discipline. He would still promise far in excess of what he could [immediately] achieve, but  achievement would come. One step forward, one step back, but with the occasional lucky break. Alfred travelled widely in Europe to sell his wares and he crossed the channel for surreptitious visits to Sheffield of which he stood in awe as the home of steel. Manchester observes that there was in fact no need to subterfuge since the secret of steel making had long since become public. Alfred returned to Essen doubly determined.

It was the age of the railways with their insatiable appetite for steel. Britain, of course, led the field, but Alfred secured his place with his patent for a seamless tyre (wheel). This sold well and built his company’s strength for Alfred’s next venture: the steel barrelled gun. Big guns at that time was cast from bronze and the military establishment saw no reason for change, also they didn’t believe that an iron barrel would withstand the explosion which  propelled the ball or shot. Alfred was a determined salesman and managed to befriend the Crown Prince Wilhelm, later King Wilhelm I, and, as importantly, Bismark who was about to revolutionise the German military. This led to the sales of some hundreds of guns of various calibres. Key to the success of Alfred’s guns was the fact that they were breach loading, improving the speed of reloading. This, Manchester suggests, put Krupp ahead of Armstrong of whom I wrote in HBSTMW. The breach loading guns were tested in anger in the brief conflict between the German states in the 1860s but they did not do well; a number exploded killing the gun crews. Alfred, a man of poor health and of a nervous disposition, went to ground. He blamed the new Bessemer process for making steel. The truth was that Bessemer did not work well with poor quality ore and the Ruhr, for all its riches of coal, offered iron ore with too much phosphate.

A fellow German, who would become a naturalised Englishman, Carl Wilhelm Siemens (later Sir Charles William Siemens) invented an alternative process that did work with impurities in the ore and I wrote about this in HBSTMW noting that it was embraced in England by Vickers. In what was fast becoming the new Germany it was also embraced by Alfred.

To the fury of just about everyone but himself, Alfred was more than happy to sell guns to whatever nation would pay for them. He tried England, but the government stayed loyal to Armstrong. He tried France, but managed to offend – something he was very good at - and so they stood by Schneider. Russia proved good customers, but his own Prussia blew hot and cold, although in the event of the Franco-Prussian war, more hot than cold. Krupp had equipped the Prussian army with five hundred steel breach loading cannon. Notwithstanding this, commentators confidently expected Emperor Louis Napoleon to follow in the footsteps of his great forebear and send the Prussians packing. The reality was the opposite, with the Krupp ordnance wreaking havoc among the French who really stood no chance.

This came just before the unification of Germany in 1871 after which Manchester suggests ‘the fathers of modern warfare were Alfred Krupp and Werner von Siemens with his telegraph’. He had earlier observed that three companies: Krupp, Schneider and Armstrong comprised a ‘deadly triumvirate’. However, yet again the Prussian high command remained reluctant to give their wholehearted backing to Krupp, being wedded to brass cannon. Manchester also points to the failure of Schneider, explaining that their production had suffered from communist agitators and that they remained, then, attached to the bronze cannon refusing even the reinforced wrought iron cannon of Joseph Whitworth. Nevertheless, French reparations following the German victory fuelled industrial activity making it a golden era for Krupp who further increased his reserves of iron ore this time in Spain where the ore was pure enough for the Bessemer process. As so often with fuel driven industrial activity, the boom was followed by a crash which echoed over the other side of the Atlantic to be felt by Edison and Westinghouse as they battled over which system of electricity transmission would prevail. I write about this in another post.

The crash hit even Krupp and he only kept going having agreed to stringent conditions imposed by his bankers. Meanwhile the Krupp works were producing rails by the mile and his patent seamless wheels by the thousand all for the massive expansion of American railways. It wasn’t only Germany; Belgium and, in England, Vickers were also supplying massive quantities over the Atlantic.

As Alfred neared the end of his life, he could look with immense pride at what he had created. His company was big in every sense. Manchester writes, ’with a fleet of ships in the Netherlands, ore fields in Spain and agents in every major capital, he had become an international institution.’ He goes on to list ‘chains with links as large as a man’s head’, ‘looming gantries with rivets wider than fists’. At the Philadelphia exhibition in 1876, Krupp exhibited a 60 ton cannon which fired shells weighing half a ton.

Not only was his company big, but its reach was really phenomenal. Krupp was said to supply the armies of some forty-six nations including Russia, Austria, China and Japan. There was still an exception, German military stuck firmly with bronze cannon and try as he might Alfred could not convince them otherwise.

Alfred was succeeded by his son Fritz at about the same time as the new Kaiser, Wilhelm II succeeded his father. The two men hit it off and the Krupp empire became even more clearly aligned with that of the Prussian state.

Krupp’s range of activity was growing. They were approached by Rudolf Diesel who insisted that his engine should be made of steel. A 32 hp diesel engine resulted in 1897. Hiram Maxim invited Krupp to manufacture his machine guns which used smokeless gunpowder (ballistite) invented by Alfred Nobel.

In terms of other weaponry, a race was underway not only between opposing nations and indeed opposing manufacturers, but between attack and defence. Fritz had witnessed the armour plating on war ships becoming as much as two feet thick and so incredibly heavy. Was there an alternative? Engineers experimented with alloys and came up with Nickel Steel which was not only as strong but could be used in cannon making all argument about bronze firmly obsolete. So guns became more powerful and shells more lethal. A  further improvement to steel armour came with carbon steel, the patents for which were made available under licence to Krupp, Vickers, Armstrong, Schneider, Carnegie and Bethlehem steel.

The storm clouds, though, were gathering. The American steel works were growing and would soon be very much larger than their European rivals. To make matters worse, once their production met US demand, imports would in effect be banned and Britain, Belgium and Germany would need to redirect their steel production once again to arms. In this they were well placed, a situation further enhanced by Germany’s decision in effect to create a navy under Tirpitz to match the British and the French. Krupp became even busier, now building ships as well as guns.

Germany and Krupp were now irrevocably committed to war when circumstances were right.


Saturday, April 6, 2024

Who else shaped the Manufacturing World - The American System of Manufacturing

 Continuing my quest to discover who else shaped the manufacturing world, not unreasonably, I turn to America. 

An entry in the Oxford reference book is clear that America had a system of manufacturing that put it well ahead of other manufacturing nations. An academic article is more cautious looking at the American manufacturing system in the context of four products: guns, wooden timepieces, watches and axes. The system, in short, was to have interchangeable parts which could be machine made in bulk and then put together in the final product, the key being that all this could be done by unskilled workers. The article highlights one drawback that more time is needed for adjustment as interchangeable parts in practice don’t fit perfectly. Nonetheless, there it seems is the ‘system’.

The story of American manufacturing picks up from the accounts of the early settlements where the imperative was to secure food and shelter. Rebecca Fraser’s account of the Mayflower Generation focuses on the struggles with ill-health and the uninviting natural environment; relations with the native population were then not hostile. In time hostility grew as the native Indians took exception to the approach of some settlers. A third imperative was thus security.

As population increased and the infrastructure of society developed, American found itself as an exporter of agricultural produce not least tobacco, sugar and cotton. Imports were of slaves for the plantations but also manufactured goods. These goods would include weapons, agricultural tools, clothing and basic objects for the home.

The war of independence drew a line in the sand as the newly free nation weened itself off dependence on the old colonial power. This didn’t happen overnight and indeed had probably started before independence as Americans would invite in particular textile and arms manufacturers to help them set up their own facilities. As would be the case so often in the way Britain shaped the manufacturing world, the young countries would create new factories with new machinery and so not be incumbered with earlier processes or machines.

This opportunity to start with a clean sheet of paper surely contributed the what became known as the American System of Manufacturing where identical parts would be produced using machines instead of the then traditional more labour intensive and skilled manual process. Another driver of this was the need to move a workforce from agriculture to manufacturing without the time consuming learning of manual skills. The nature of the American republic is important. Where we talk of agricultural workers, we often mean small holders; men and women who had fought their way into self-sufficiency. There would therefore not be many prepared to give that up for the sake of a job in a factory. Equally in the agrarian society there were not skilled mechanics.

One name stands out in addressing this challenge and that was Eli Whitney whose career began in the southern states where he invented the cotton gin to improve the processing of raw cotton. He then moved north and set up in gun making. In order to meet the volumes needed, tasks needed to be undertaken by machines operated by unskilled labour.

Inventions alone were not enough, the creation of the American arms and textile industries was enabled by government purchasing for the needs of the army and so creating a level of demand that justified mechanisation. The position of US Ordnance is interesting. There were two main arsenals in Springfield, Massachusetts, and in Harpers Ferry, Virginia. In time these were supplemented by private manufacturers, principally Winchester Repeating Arms Company and Colt’s Patent Firearms Manufacturing both of which became successful leaders.

The evidence is that by 1851 the American system of manufacture was a known quantity as there is the story of Colt visiting the Great Exhibition and meeting a steam engine manufacturer, Richard Garrett, who was so impressed by Colt’s manufacturing methods that he built the first British factory geared to mass production, the Long Shop.

I can fast forward to the Second World War when Ford tried to make Rolls-Royce Merlin engines. These were handmade, but Ford needed to mass produce. Ford and Rolls-Royce engineers broke down the engine into parts and then into the engineering steps required to make those parts. These steps would be carried out on machines by largely unskilled workers many of whom were women new to the workplace.

Going back to the nineteenth century, America was becoming self-sufficient in manufacturing with one major exception. America, whilst rich in raw material, had only a very small capacity to produce iron and none really for steel, and it was steel that was needed not least for the massive project of connecting American by rail. This meant that not only England, but Germany and Belgium exported steel rails, tyres and other railway equipment including locomotives and rolling stock. I have written in HBSTMW how this export trade boosted British steel making and this was also the case with the German Krupp which I write about in a separate post. The story of the American steel industry is thus another strand which I will cover.

The image is of my mother and father together with the president of Chrysler at their WW2 tank factory which surely epitomised the American System of Manufacturing. You can read more of this by following this link.




Thursday, April 4, 2024

Derby and the Museum of Making

 The city of Derby is a home of British engineering and of probably the first textile factory at the Silk Mill. This has been repurposed to tell Derby’s story. The image is of the mill with thanks to the museum.

The Museum of Making takes the visitor through the astonishing array of manufacturing activity carried on in this midlands city really from the eighteenth century onwards. The museum has one floor titled simply assemblage and they suggest that this looks more like a museum store than a curated display. These photographs help to give a flavour

Voltage regulator

The entrance picks up one of the earliest contributions in the Silk Mill itself, an early example of the factory manufacturing system, taken further fifty years later by Arkwright at Cromford Mill

A work in progress paying homage to the Midland Railway

The railways are the subject of many exhibits from rails, signals to telegraph equipment, but no locomotives (you need to go to York for them). There are mock ups from the Derby railway workshops, not least the Intercity 125. It is clear that the Midland Railway based in Derby was a leader.

You can just about see a wooden mock up

Lawnmowers tell of the presence in the city of Qualcast. Fashion wear speaks of the ground breaking work in artificial fibres at British Celanese later part of Courtaulds. There are a number of eletrical equipment manufacturers. Ceramics feature with industrial examples on display; Crown Derby and Denby will be found elsewhere.

There is a Rolls-Royce aero engine suspended from the roof and information boards telling the story of this, the city's most illustrious son which came to its site at Sinfin Lane because the local authority could offer electric lighting. There are on display models of Hawk and other famous engines.

Derby did its job in war time in addition to Rolls-Royce Merlins, there was a huge army Motor Transport depot

You can read more in my books How Britain Shaped the Manufacturing World and Vehicles to Vaccines

Manufacturing places - the art of re-invention

My exploration of British manufacturing has been sector by sector and chronological. I am now beginning to join up the dots and explore thos...