My books on manufacturing

My books on manufacturing
My books on manufacturing history
Showing posts with label carnegie. Show all posts
Showing posts with label carnegie. Show all posts

Thursday, April 18, 2024

Who else shaped the manufacturing world - American steel

 The story of American steel making begins in the wake of the Civil War. A number of academics take a start date of 1867 which coincides with the dramatic increase in US territory with the purchase of Alaska from Russia. Steel making though was to focus on the Commonwealth of Philadelphia where there were plentiful reserves of good quality ore. The invention of a process for the mass production of steel from iron by Englishman, Henry Bessemer, provided the key first step. A fascinating article in the journal of the Society for Industrial Archaeology by Henry Sisson entitled A Revolution in Steel: Mass Production in Pennsylvania, 1867-1901 offers a detailed account of both the technical developments and the companies, men and places involved.

In the years after the Civil War, railways were spreading across the vast continent and American steel makers were determined to see off foreign competitors. The Bessemer process was the starting point, but thereafter it was all about improvements in efficiency and also the quality of the finished product. This latter point came into sharper focus when manufacturing moved beyond basic rails to switches and ‘frogs’ ( common-crossing) but more importantly structural steel for bridges and the frames of buildings, eventually the skyscrapers in the 1880s. I shall pick up on some of Sisson’s detail.

He begins with some statistics. Before the Civil War, steel production was limited to specialist uses and amounted to under 12,000 tons per year. Once mass production had started in Steelton, Pennsylvania in 1870, production increased to just under 50,000 tons. By 1900, the country’s steel makers were producing just over ten and a half million tons of ingots and castings. In terms of productivity, the average tons of iron and steel per worker increased from 62 in 1880 to 132 in 1900.

John Fritz was one of the leading engineers and observed that ‘the modern practice of steel making has, in the hands of the mechanical engineer, the metallurgist and chemist, wrought wonders in producing a material which in quantity, physical qualities and cheapness would have been utterly impossible half a century ago, when steel rails, beams, angles and plates were not thought of, and steel was regarded as a luxury of the material of the working artisan’.

The driving force for this revolution was men like Andrew Carnegie who saw cost reduction as the fundamental measure of progress. He had the vision to see that capital expenditure, to ensure he was using the latest technology, was never in vain. The Bessemer process was a starting point; it needed the addition of a patent taken out by Robert Mushet. Renowned engineer Alexander Holley encouraged the holders of the two patents to join together and thereafter Holley installed the updated Bessemer plants throughout the steel making country.

As we saw in the case of Germany, Bessemer couldn’t cope with ore with a high phosphorous content; the answer was found in the open hearth furnace which were installed where needed.

So much for the process of converting iron into steel. American engineers worked at improving the efficiency of blast furnaces producing iron. This iron had to be handled and so mechanical means were introduced. Eventually iron furnaces were relocated close to the converters allowing molten iron to be used. All the time, engineers were looking for ways better to utilise the heat from the furnaces. Appropriately the produce from the converters in the form of rails were laid by the hundreds of miles to bring raw material to the sites and to take the finished products to end users.

It would be wrong to suggest that improvements were not being made in England or Germany, but the USA was spearheading mass production in steel products and this led to massive increases in manufacturing overall and hence to the shift from being an importer to being a major exporter of manufactured goods.

The position of England as described by Carr and Taplin in their History of the British Steel Industry is revealing. The Americans were much taken by the power of electricity and I will be writing about this elsewhere. They employed this power in rolling mills and a variety of other apparatus that improved the efficiency of the steel making process. We know that the British were slow in embracing the power of electricity, they were also the polar opposite of Carnegie in their reluctance to invest. The problem with steel-making was and indeed is that it is capital intensive and machine heavy, and so innovation comes at a price. Carnegie saw this as a price worth paying.

There was another factor. When the demand for steel rails slumped with the substantial completion of the rail network, alternative uses for steel were needed. Carnegie saw them with great clarity in the form of high-rise buildings constructed with a steel frame. The British were more conservative and it took half a century for that method of construction to be embraced in these islands. This was much later than continental European nations. The Eiffel Tower built in 1889 is but one example.

The exports of steel from European countries is also revealing, with England in the lead, followed by Germany and then Belgium. Belgium and indeed neighbouring Luxembourg had rich reserves of ore. But what about France? Carr and Taplin explain that France’s richest reserves in Alsace Lorraine had been taken by Germany. France had sufficient elsewhere for its own use, but not in order to play a significant role in export.

A twenty year period up to the start of the First World war witnessed a massive growth in America’s exports of manufactured goods including machinery and, in particular, electrical machinery, sewing machines and typewriters but also rails and structural steel. The reasons for the increase are intriguing. Firstly, new reserves of iron ore had been discovered near the Great Lakes, ore that was near the surface and very rich in iron. This reduced the costs of inputs which flowed through to the price of the finished product. The price steadied as Andrew Carnegie bought up some three quarters of the reserves. Mechanisation, in particular the use of electricity, in American steel production also reduced costs. A factor outside the control of the Americans was lengthy strike action in Britain in 1912 which left the door open to American goods. The American manufacturers of sewing machines (Singer) and electrical equipment (British Thomson Houston and British Westinghouse) soon followed their export success by setting up manufacturing in Britain.

Steel beams supporting the roof in Washington cathedral

How Britain Shaped the Manufacturing World is now available to pre-order

Phil Hamlyn Williams has completed his sixth book beginning an exploration of British manufacturing. His great-grandfather exhibited at the ...